Math, asked by edshabty9, 9 months ago

Show that 2tan^-1X=tan^-1 2X/1-X^2

Answers

Answered by Anonymous
4

Given,

2 \tan{}^{ - 1}  x=  \tan  { }^{ - 1}  \frac{2x}{1 -  {x}^{2} }

Now,

Let,

tan { }^{ - 1}x  =  \alpha

Then,

tan \:  \alpha  = x

We know that,

tan \: 2 \alpha  =  \frac{2 \: tan \:  \alpha }{1 -  {tan}^{2}  \alpha }

2 \:  \alpha  =  {tan}^{ - 1} ( \frac{2 \: tan \:  \alpha }{1 -  {tan}^{2}  \alpha } )

Now,

We will substitute the value of tan alpha and alpha.

2 {tan}^{ - 1} x =  {tan}^{ - 1} ( \frac{2x}{1 -  {x}^{2} } )

Hence proved

Similar questions