Math, asked by Nishad10, 10 months ago

show that (2x + 3y)^2 = (2x + 3y)^2 + 24xy​

Answers

Answered by ғɪɴɴвαłσℜ
7

Aɴꜱᴡᴇʀ

Thus LHS≠RHS(just use common sense both sides have the same number and (2x+3y)² and if the rhs is added with a 24xy how will they be the same)

_________________

Gɪᴠᴇɴ

 \large \tt(2 x  + 3y {)}^{2}  = (2x + 3y {)}^{2}  + 24xy

_________________

Sᴛᴇᴘꜱ

  \tt(2 x  + 3y {)}^{2}  = (2x + 3y {)}^{2}  + 24xy \\  \\  \large \tt \: with \: (x + y {)}^{2}  =  {x}^{2}   +2xy +  {y}^{2}  \\  \\  \tt first \: lhs \\  \\   \tt(2x {)}^{2}  + (3y {)}^{2}  + 2(2x)(3y)  \\  \\  \tt \dashrightarrow 4 {x}^{2} + 9 {y}^{2}   + 12xy \\  \\  \tt{}next \: rhs \\  \\  \tt{}as \: they \: both \: are \: the \: same \\  \\  \tt{}4 {x}^{2}  + 9 {y}^{2}  + 12xy + 24xy  \\  \\  \tt \dashrightarrow4 {x}^{2} + 9 {y}^{2}   + 36xy

_________________

\huge{\mathfrak{\purple{hope\; it \;helps}}}

Answered by Anonymous
26

 \large \tt(2 x  + 3y {)}^{2}  = (2x + 3y {)}^{2}  + 24xy

  \tt(2 x  + 3y {)}^{2}  = (2x + 3y {)}^{2}  + 24xy \\  \\  \large \tt \: with \: (x + y {)}^{2}  =  {x}^{2}   +2xy +  {y}^{2}  \\  \\  \tt first \: lhs \\  \\   \tt(2x {)}^{2}  + (3y {)}^{2}  + 2(2x)(3y)  \\  \\  \tt \dashrightarrow 4 {x}^{2} + 9 {y}^{2}   + 12xy \\  \\  \tt{}next \: rhs \\  \\  \tt{}as \: they \: both \: are \: the \: same \\  \\  \tt{}4 {x}^{2}  + 9 {y}^{2}  + 12xy + 24xy  \\  \\  \tt \dashrightarrow4 {x}^{2} + 9 {y}^{2}   + 36xy

\huge{\mathfrak{\red{hope\; it \;helps}}}

Similar questions