Math, asked by Mahek2233, 4 months ago

show that (2x+5)^ - (2x-5)^ = 40x​

Answers

Answered by Laceymac07
0

Answer:

Equation at the end of step 1

 ((2•(x5))-(2•(x4)))-(23•5x3)

STEP  

2

:

Equation at the end of step

2

:

 ((2 • (x5)) -  2x4) -  (23•5x3)

STEP  

3

:

Equation at the end of step

3

:

 (2x5 -  2x4) -  (23•5x3)

STEP

4

:

STEP

5

:

Pulling out like terms

5.1     Pull out like factors :

  2x5 - 2x4 - 40x3  =   2x3 • (x2 - x - 20)  

Trying to factor by splitting the middle term

5.2     Factoring  x2 - x - 20  

The first term is,  x2  its coefficient is  1 .

The middle term is,  -x  its coefficient is  -1 .

The last term, "the constant", is  -20  

Step-1 : Multiply the coefficient of the first term by the constant   1 • -20 = -20  

Step-2 : Find two factors of  -20  whose sum equals the coefficient of the middle term, which is   -1 .

     -20    +    1    =    -19  

     -10    +    2    =    -8  

     -5    +    4    =    -1    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -5  and  4  

                    x2 - 5x + 4x - 20

Step-4 : Add up the first 2 terms, pulling out like factors :

                   x • (x-5)

             Add up the last 2 terms, pulling out common factors :

                   4 • (x-5)

Step-5 : Add up the four terms of step 4 :

                   (x+4)  •  (x-5)

            Which is the desired factorization

Step-by-step explanation:

Answered by Anonymous
1

Answer:

Step-by-step explanation:

2x + 5x5 - 40x = 2x - 5x5

2x + 25 - 40x = 2x - 25

25 - 40x - 2x = 2x - 25

25 - x(40-2)= 2x - 25

25 - 38x = 2x - 25

= 2x + 38x - 25 -25

=x(2 + 38) -0

=40x

Similar questions