Show that (2x + 7) is a factor of 2x³ + 7x² – 4x – 14. Hence factorize the expression.
Answers
Answered by
53
Solution :
Let p(x) = 2x³+7x²-4x-14
To show 2x+7 is a factor ,
Take , 2x + 7 = 0
2x = -7
=> x = -7/2
put x = -7/2 in p(x )
i ) p(-7/2 ) = 2(-7/2)³+7(-7/2)²-4(-7/2)-14
= -343/4 + 343/4 + 14 - 14
= 0
Therefore ,
2x + 7 is a factor of p(x).
[ By factor theorem ]
ii )
2x+7)2x³+7x²-4x-14(x²-2
*******2x³+7x²
____________
****************-4x-14
***************-4x -14
_______________
**********( 0 )
p(x) = (2x+7)( x²-2 )
= (2x+7)[ x² - (√2)²]
= ( 2x + 7 )( x + √2 )( x - √2 )
•••••
Let p(x) = 2x³+7x²-4x-14
To show 2x+7 is a factor ,
Take , 2x + 7 = 0
2x = -7
=> x = -7/2
put x = -7/2 in p(x )
i ) p(-7/2 ) = 2(-7/2)³+7(-7/2)²-4(-7/2)-14
= -343/4 + 343/4 + 14 - 14
= 0
Therefore ,
2x + 7 is a factor of p(x).
[ By factor theorem ]
ii )
2x+7)2x³+7x²-4x-14(x²-2
*******2x³+7x²
____________
****************-4x-14
***************-4x -14
_______________
**********( 0 )
p(x) = (2x+7)( x²-2 )
= (2x+7)[ x² - (√2)²]
= ( 2x + 7 )( x + √2 )( x - √2 )
•••••
Answered by
7
Answer:
(2x+7)(×+2)(×-2)
Step-by-step explanation:
Let f(x) = 2x^3 + 7x^2 - 4x - 14
2x + 7 = 0
2x = -7
x = -7/2
f(-7/2)=2((-7/2)^3 +7((-7/2)^2) -4(-7/2) -14
=2(-343)/8 +7(49)/4 +28/2 -14
= -343+343-56+56
_______________
4
= 0
f(-7/2)=0
2x+7 is a factor of f(x)
2x^3 + 7x^2 -4x -14 = (2x+7)(x^2 -2)
= (2x+7)(x+2)(x-2)
Similar questions