Math, asked by 9968419120, 1 year ago

Show that -3/2 and -3 are zeros of the polynomial 6x³+23x²+9x-18 also find the third zero of the polynomial

Answers

Answered by asis11001pbav15
7
check out pic for ur answer
Attachments:
Answered by Anonymous
34

Let p(x) be the given polynomial 6x³ +23x² + 9x - 18, then p(x) = 6x³ +23x² + 9x - 18

\sf{Now,p}\sf\frac{(-3)}{(2)}^3+23\sf\frac{(-3)}{(2)}^2+9\sf\frac{(-3}{(2)}-18

= \sf{6}\sf\frac{(-27)}{(8)}+23\sf\frac{(9)}{(4)}-\frac{27}{2}-18

= \sf\frac{-81}{4}+\frac{207}{4}-\frac{54}{4}-18

= \sf\frac{-81+207-54}{4}-18

= \sf\frac{207-135}{4}-18

= \sf\frac{72}{4}-18

= \sf{18-18}

= \sf{0}

\implies\sf\frac{-3}{2}

is a zero of the given polynomial 6x³ + 23x² + 9x - 18

and \sf{p(-3)=6(-3)^3+23(-3)^3+9(-3)-18}

= \sf{6(-27)+23(9)-27-18}

= \sf{-162+207-45}

= \sf{-207-207}

= \sf{0}

\implies -3 is a zero of the given polynomial 6x³ + 23x² + 9x - 18

Since \sf\frac{-3}{2} and \sf{-3} are the zeros of the polynomial 6x³ + 23x² + 9x - 18, therefore both \sf{(x)+}\sf\frac{(3)}{(2)} and (x+3) are the factors of 6x³ + 23x² + 9x - 18.

\sf{Let\:g(x)=}\sf{(x)+}\sf\frac{(3)}{(2)}\sf{(x+3)}=\sf{(2x+3)(x+3)=2x^2+9x+9}

• Since \sf{(x)+}\sf\frac{(3)}{(2)} and (x+3) are the factors of p(x), therefore g(x) = 2x² + 9x + 9 is a factor of p(x).

So, when we divide p(x) by g(x) , we have

3x-2

Thus, 6x³ + 23x² + 9x - 18 = (2x² + 9x - 9)(3x - 2)

\impliesThe third factor of 6x³ + 23x² + 9x - 18 is 3x-2.

Similar questions