Math, asked by himanshittt, 1 year ago

Show that [√3/2+i/2]³=i​

Answers

Answered by mantu9000
6

We have to show that, (\dfrac{\sqrt{3} }{2} +\dfrac{i}{2} ) ^3=i.

Solution:

L.H.S. = (\dfrac{\sqrt{3} }{2} +\dfrac{i}{2} ) ^3

= (\dfrac{\sqrt{3}+i }{2}  ) ^3

= \dfrac{(\sqrt{3})^3+i^3+3\sqrt{3}^2i+3\sqrt{3}i^2 }{8}

= \dfrac{3\sqrt{3}-i+3(3)i-3\sqrt{3} }{8}

= \dfrac{-i+9i }{8}

= \dfrac{8i }{8}

= i = R.H.S., proved.

Hence, (\dfrac{\sqrt{3} }{2} +\dfrac{i}{2} ) ^3=i proved.

Answered by pulakmath007
3

SOLUTION

TO PROVE

 \displaystyle \sf{ { \bigg(  \frac{ \sqrt{3} }{2} +  \frac{i}{2}  \bigg)}^{3} }

FORMULA TO BE IMPLEMENTED

 \displaystyle \sf{  {( \cos \theta + i \sin \theta)}^{n}   = \cos n\theta + i \sin n\theta}

EVALUATION

 \displaystyle \sf{ { \bigg(  \frac{ \sqrt{3} }{2} +  \frac{i}{2}  \bigg)}^{3} }

 \displaystyle \sf{  = { \bigg(  \cos  \frac{\pi}{6}  +  i \sin \frac{\pi}{6} \bigg)}^{3} }

 \displaystyle \sf{  = { \bigg(  \cos  \frac{3\pi}{6}  +  i \sin \frac{3\pi}{6} \bigg)} }

 \displaystyle \sf{  = { \bigg(  \cos  \frac{\pi}{2}  +  i \sin \frac{\pi}{2} \bigg)} }

 \displaystyle \sf{  =0 + i}

 \displaystyle \sf{  =  i  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. show that sinix=isinhx

https://brainly.in/question/11810908

2. (1-w+w2)(1-w2+w4)(1-w4+w2)...to 2n factors

https://brainly.in/question/22457549

Similar questions