Math, asked by mrkiran2305, 11 months ago

show that (-3,-4),(12,5),(14,12),(-1,3) are the vertices of the parallelogram ​

Answers

Answered by VishnuPriya2801
35

Answer:-

Let , A = ( -3 , -4)

B = ( 12 , 5)

C = ( 14 , 12)

D = ( -1 , 3 )

We know that, Opposite sides of a parallelogram are equal.

Hence, AB = CD & BC = DA.

We know that, distance between two points is,

 \sqrt{ (x_{2}  - x _{1})^{2} +  {(y _{2} - y _{1}) }^{2}   }

AB = CD,

 \sqrt{ {(12 - ( - 3))}^{2} + (5 - ( - 4)) ^{2}  }  =  \sqrt{ {( - 1 - 14)}^{2} + ( {3 - 12)}^{2}  }  \\  \\  \sqrt{ {(15)}^{2} + (9) ^{2}  }  =  \sqrt{ {( - 15)}^{2}  + ( { - 9)}^{2} }  \\  \\  \sqrt{225 + 81}  =  \sqrt{225 + 81}  \\  \\  \sqrt{306}  =  \sqrt{306}  \\  \\ 3 \sqrt{34}  = 3 \sqrt{34}

Hence, AB = CD.

Now, BC = DA

 \sqrt{ {(14 - 12)}^{2}  +  {(12 - 5)}^{2} }  =  \sqrt{ {( - 1 + 3)}^{2}  +  {(3 + 4)}^{2} }  \\  \\  \sqrt{ {2}^{2}  +  {7}^{2} } =  \sqrt{ {2}^{2} +  {7}^{2}  }  \\  \\  \sqrt{4 + 49}   =  \sqrt{4 + 49}  \\  \\  \sqrt{53}  =  \sqrt{53}

Hence, BC = DA.

As, opposite sides are equal, the given points are vertices of parallelogram.

Similar questions