Math, asked by deepsgmailcom9658, 9 months ago

Show that 3 · 4^n+ 51 is divisible by 3 and 9 for all positive integers n.

Answers

Answered by pulakmath007
12

\huge\boxed{\underline{\underline{\green{Solution}}}} </p><p></p><p>

3 \times  {4}^{n}  + 51

 = 3 \times  {(1 + 3)}^{n}  + 51

 = 3 \times  \{ \:  1 +  \binom{n}{1} \times 3 +  \binom{n}{2}  \times  {3}^{2}  +  \binom{n}{3}  \times  {3}^{3}   + ............ +  {3}^{n} \:  \} + 51

 = 3 \times  \{ \:  18 +  \binom{n}{1} \times 3 +  \binom{n}{2}  \times  {3}^{2}  +  \binom{n}{3}  \times  {3}^{3}   + ............ +  {3}^{n} \:  \}

 = 9\times  \{ \:  2 +  \binom{n}{1} +  \binom{n}{2}  \times  {3}^{}  +  \binom{n}{3}  \times  {3}^{2}   + ............ +  {3}^{(n - 1)} \:  \}

So 3 \times  {4}^{n}  + 51 has a factor 9

Hence 3 \times  {4}^{n}  + 51 is divisible by 3 & 9

</p><p></p><p>\displaystyle\textcolor{red}{Please \:  Mark \:  it  \: Brainliest}</p><p>

Answered by saounksh
1

ANSWER

The given expression is

\:\:\:\:\: 3.4^n + 51

 = 3(4^n + 17)

As, it is clear that 3 is a factor, the given expression is divisible by 3.

Now,

 4^n = (3+1)^n

Using Binomial expansion,

 4^n = \sum \limits_{r=0}^{n}(^nC_r3^r)

 4^n = \sum \limits_{r=1}^{n}(^nC_r3^r) + (^nC_03^0)

 4^n = 3\sum \limits_{r=1}^{n}(^nC_r3^{r-1} ) + 1

 4^n = 3q + 1

where q is an integer.

[ This can also be concluded by writing out values of  4^n for various values of n]

So,

\:\:\:\:\:3(4^n + 17)

= 3(3q+1 + 17)

= 3(3q + 18)

= 3\times 3(q + 6)

= 9(q + 6)

Since 9 is a factor, the given expression is divisible by 9.

Hence Proved

Similar questions