Math, asked by yuktirawat21, 9 months ago

Show that (√3+√5)^2 is an irrational number.

Answers

Answered by ItzAditt007
1

Answer:-

To Prove:-

  • \tt(\sqrt{3}+\sqrt{5})^2 is a irrational number.

ID Used:-

  • \tt (a+b)^2 = a^2+b^2+2ab.

So Now,

Let us first simplify \bf(\sqrt3+\sqrt5)^2.

 \\ \tt\mapsto( \sqrt{3}  +  \sqrt{5} ) {}^{2}. \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \tt=  ( \sqrt{3}) {}^{2}   + ( \sqrt{5}) {}^{2}   + 2( \sqrt{3})( \sqrt{5}).   \\  \\  \tt = 3 + 5 + 2 \sqrt{15}. \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \tt = 7 +  2 \sqrt{15}  . \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now,

Let \bf 7+\sqrt{15} be a rational number.

 \\ \tt\mapsto7 +  2\sqrt{15} =  \dfrac{p}{q},

\\ \textrm{Where p and q are integers and q $ \neq $ 0.}

 \\ \tt\mapsto 2 \sqrt{15}  =  \dfrac{p}{q}  - 7.

 \\ \tt\mapsto2 \sqrt{15}  =  \dfrac{p - 7q}{q}  \:  \:  \rm(by \:  \: taking \:  \: lcm.)

 \\ \tt\mapsto \sqrt{15}  =  \frac{p - 7q}{2q}  =  \frac{integer}{integer}.

 \\ \tt\mapsto \sqrt{15}  =  \dfrac{integer}{integer} .

▪︎ And we know that every rational number is in the form of p/q where p and q are integers and q is not equal to 0.

▪︎ And these all conditions are satisfied by \bf\sqrt{15} by the above simplifications.

▪︎ So we can say that \bf\sqrt{15} is a rational number.

▪︎ But it contradicts the fact that is it an irrational number.

▪︎ This contradiction has arisen because of our wrong assumption.

▪︎ So our assumption that \bf(\sqrt{3}+\sqrt{5})^2 Was wrong.

▪︎ And hence we can conclude that it is an irrational number.

...Hence Proved...

Similar questions