Show that ( √3+√5)^2 is an irrational number ?
Answers
Answered by
11
Answer:
2+2+2+2+2+2×2+2+2+2+2+2=75747565656
Answered by
2
Let us assume to the contrary that (√3+√5)² is a rational number,then there exists a and b co-prime integers such that,
(√3+√5)²=a/b
3+5+2√15=a/b
8+2√15=a/b
2√15=(a/b)-8
2√15=(a-8b)/b
√15=(a-8b)/2b
(a-8b)/2b is a rational number.
Then √15 is also a rational number
But as we know √15 is an irrational number.
This is a contradiction.
This contradiction has arisen as our assumption is wrong.
Hence (√3+√5)² is an irrational number.
(√3+√5)²=a/b
3+5+2√15=a/b
8+2√15=a/b
2√15=(a/b)-8
2√15=(a-8b)/b
√15=(a-8b)/2b
(a-8b)/2b is a rational number.
Then √15 is also a rational number
But as we know √15 is an irrational number.
This is a contradiction.
This contradiction has arisen as our assumption is wrong.
Hence (√3+√5)² is an irrational number.
Similar questions
Computer Science,
1 month ago
Physics,
1 month ago
Social Sciences,
1 month ago
Environmental Sciences,
2 months ago
Geography,
9 months ago
Math,
9 months ago
English,
9 months ago