show that 3cos _1x=cos_1(4cube _ 3x)xE(1/2,1)
Answers
Answered by
0
Answer:
Let x=cosθ⇒cos−1x=θ.
Thus we have,
R.H.S.=cos−1(4x3−3x)
=cos−1(4cos3θ−3cosθ)
=cos−1(cos3θ)
=3θ=3cos−1x=L.H.S.
Answered by
0
Answer:
We have to prove that 3cos−1x=cos−1(4x3−3x)
First consider RHS, cos−1(4x3−3x)
Let us take x=cosθ, we know that cos(3θ)=4cos3θ−3cosθ
⟹cos−1(4x3−3x)=cos−1(4cos3θ−3cosθ)=cos−1(cos(3θ))=3θ
∵θ=cos−1x, ⟹cos−1(4x3−3x)=3cos−1x
∴LHS=RHS
0≤3cos−1x≤π
0≤cos1x≤π/3
∴xϵ[21,1]
Hence proved.
HOPE IT HELPS YOU OUT DEAR ☺☺
HAVE A NICE DAY AHEAD ❤❤❤
Similar questions