Math, asked by arfanmohammed2005, 9 months ago

show that (3x+2) is a factor of (6x^3+13x^2-4) and hence factories (6x^3+13x^2-4)​

Answers

Answered by amankumaraman11
21

Given :-

 \bf{p(x) =  {6x}^{3}  +  {13x}^{2}  - 4}

 \bf{g(x) = 3x + 2}

Here,

 \sf =  > 3x  +  2 = 0 \\  =  > \boxed{ \sf \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  x =  \frac{ - 2}{3} }

Now,

 \sf{p \bigg( \frac{ - 2}{3}  \bigg) = {6 \bigg( \frac{ - 2}{3}  \bigg)}^{3}  } +  {13 \bigg( \frac{ - 2}{3}  \bigg)}^{2}  - 4 \\  \\  \sf  \:  \:  \:  \:  \:  \:  \: =  >  \frac{6 \times ( - 8)}{27}  +  \frac{13 \times 4}{9}  - 4 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  =  >   \frac{ - 48}{27}  +  \frac{52}{9}  - 4 \\  \\  \sf \:  \:  \:  \:  \:  \:  \: =  >   \frac{ - 48 + 156 - 108}{27}  \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  =  >  \frac{ \cancel{ - 156}  \cancel{+ 156}}{27}  \:  \:  =  {0}

Since, p(-2/3) is equal to 0. The g(x) = 3x + 2 is the factor of p(x).

Thus,

 \text{Factorisation \:of  \:p(x)} :

 \large \tt \implies {6x}^{3}   +  {13x}^{2}  - 4 \\ \tt \implies    {6x}^{3}  +  {4x}^{2}   +  {9x}^{2} + 6x - 6x - 4 \\  \tt\implies   {2x}^{2} (3x + 2) +  3x(3x + 2) - 2(3x + 2)\\ \tt \implies (3x + 2)( {2x}^{2} + 3x - 2 )\\  \tt\implies(3x + 2)[ {2x}^{2}  + 4x - x - 2] \\ \tt \implies (3x + 2)[2x(x + 2) - 1(x + 2)]\\  \tt\implies(3x + 2)[(x + 2)(2x - 1)] \\   \implies \boxed{ \tt( \red{3x + 2})( \red{x + 2})( \red{x - 1}) \:  \: }

 \\  \\

  • MARK BRAINLIEST ⚛⚛

  • BE THE BETTER ☑☑

  • FEEL MOTIVATED ☢☢
Answered by rosy1412
2

Please mark this answer as brainliest

2x ^{2}  + 3x - 2

This is the quotient of long division

Attachments:
Similar questions