Math, asked by TheAppleTree, 9 months ago

show that 3x+5 is a factor of 3x^3-16x^2-5x+50​

Answers

Answered by nash48357
0

Answer:

Step-by-step explanation:

Attachments:
Answered by cutie08
0

 \color {red} </p><p>\Large \underline {\underline {Question \: :}}

Show that 3x + 5 is a factor of 3x³ - 16x² - 5x + 50.

 \color {red} </p><p>\Large \underline {\underline {Answer \: :}}

3x + 5 = 0

3x =  - 5

 x =  - \frac{5}{3}

Put the value of x in 3x³ - 16x² - 5x + 50.

p(x) = 3x {}^{3}  - 16 {x}^{2}  - 5x + 50

p( -  \frac{5}{3} ) = 3( -  \frac{5}{3} ) {}^{3}  - 16 {( -  \frac{5}{3} )}^{2}  - 5( -  \frac{5}{3} ) + 50

p( -  \frac{5}{3} ) = 3 \times  -  \frac{125}{27}  - 16 \times  \frac{25}{9}  - 5 \times  -  \frac{5}{3}  + 50

p( -  \frac{5}{3} ) =  -  \frac{125}{9}  -  \frac{400}{9}  +  \frac{25}{3}  + 50

p( - \frac{5}{3} ) =  -  \frac{175}{3}  +  \frac{25}{3}  + 50

p( -  \frac{5}{3} ) =  - 50 + 50

p( -  \frac{5}{3} ) = 0

Hence, the value of p(-5/3) = 0

 \implies So, we can say that 3x + 5 is a factor of 3x³ - 16x² - 5x + 50.

 \large \textbf \purple {PROVED!!}

★_____________________★

 \Large \mathcal \pink {HOPE \:  IT \: HELPS} ❤️

 \huge \green {Brainliest \: please} ✌️

★_____________________★

Similar questions