show that 4 sin theta cos cube Theta - 4 cos theta sin cube theta is equal to sin 4 theta
Answers
Answered by
31
Answer:
Sin4θ
Step-by-step explanation:
To prove --->
4 Sinθ Cos³θ - 4 Cosθ Sin³θ = Sin4θ
Proof--->
LHS = 4 Sinθ Cos³θ - 4 Cosθ Sin³θ
= 4 Sinθ Cosθ ( Cos²θ - Sin²θ )
= 2 (2Sinθ Cosθ ) (Cos²θ - Sin²θ )
We have two formulee
2SinA CosA = Sin2A
Cos²A - Sin²A = Cos2A
Applying these formula
= 2 Sin2A Cos 2A
= Sin 2 (2A )
= Sin 4A = RHS
Additional information --->
1)Cos2A = 2 Cos²A - 1
2) Cos2A = 1 - 2Sin²A
3) tan 2A = 2 tanA / (1 - tan²A)
4) Sin2A = 2 tan A / (1 + tan²A)
5) Cos2A = (1 - tan²A) /( 1 + tan²A)
Answered by
5
Answer:
Hello friends Here is your answer
Attachments:
Similar questions
Math,
6 months ago
English,
6 months ago
Chemistry,
6 months ago
Math,
1 year ago
Social Sciences,
1 year ago