Math, asked by deveshupadhyay277304, 3 months ago

show that
4sin∅cos∅=2sin²∅​

Answers

Answered by hemanji2007
3

Topic:

Trigonometry

Question:

Prove that

4 \sin\alpha  \cos\alpha  = 2 { \sin }^{2}  \alpha

Solution:

4 \sin \alpha  \cos \alpha   = 2 \times  { \sin}^{2}  \alpha

take \: 2 \: common \:  \\ 2(2 \sin\alpha  \cos \alpha ) \\  = 2 \sin2 \alpha

More Information :

Trignometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigonometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonometric ratios

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Multiples:

sin2θ= 2 sinθ cosθ

cos2θ= cos²θ-sin²θ

tan2A= 2tanA/1-tan²A

Similar questions