Math, asked by thefrostking107, 8 months ago

Show that: (6a – 5b)2 – (6a +5b)2 = - 120 ab

Answers

Answered by aryan073
16

Solutions :

^o^^o^^o^^o^^o^^o^^o^^o^^o^^o^^o^^o^^o^^o^^o^^o^^o^^ω^^o^^o^^o^^o^^o^^o^^o^^o^^o^^o^^o^^o^

Step-by-step explanation:

Given equation :

\sf{(6a-5b)^2-(6a+5b)^2)=-10ab}

LHS:

[tex]\sf{(6a-5b)^2-(6a+5b)^2}[/tex]

\sf{(36a^2+25b^2-60ab)-(36a^2+25b^2+60ab)}

\sf{(36a^2+25b^2-60ab-36a^2-25b^2-60ab)}</p><p>

\sf{(-60ab-60ab)}

\sf{(-120ab)}

\bf{the LHS will be -120ab}

RHS:

\sf{-120ab}

☞LHS=RHS=-120ab

\bold{\purple{\fbox{\red{Please thank it}}}}

Answered by rk4846336
13

Answer:

We have to use the formula

(a+b)^2 =a^2+b^2+2ab.

(a-b)^2=a^2+b^2-2ab

=(6a-5b)^2 -(6a+5b)^2

=36a^2+25b^2-60ab-(36a^2+25b^2+60ab)

=36a^2+25b^2-60ab-36a^2-25b^2-60ab

= -120ab

Mark it brainliest answer dear

have a great day

Similar questions