Show that, 7 log〖(10/9〗)+2 log〖(81/80〗)=2 log〖(25/24〗)+log2
Answers
Step-by-step explanation:
Given:-
7 log (10/9) + 3 log (81/80)
To find:-
Show that:-
7log(10/9)+3log(81/80)=2log(25/24)+log 2
Solution:-
LHS:-
7 log (10/9) + 3 log (81/80)
We know that
log (a/b) = log a - log b
=> 7(log 10 - log 9 ) + 3( log 81- log 80)
=>7 log 10 - 7 log 9 + 3 log 81 - 3 log 80
=> 7 log (2×5) - 7 log 3^2 + 3 log 3^4
- 3 log (2^4×5)
We know that log (ab) = log a + log b
=>7 log 2+ 7 log 5 -7 log 3^2+3 log 3^4
-3 log 2^4+ 3 log 5
We know that
log a^m = m log a
=>7 log 2 + 7 log 5 -(2×7) log 3 +
(3×4) log3 -(3×4) log 2 + 3 log 5
=> 7 log 2 + 7 log 5 -14 log 3 + 12 log 3
-12 log 2 -3 log 5
=> (7-3) log 5 +(-14+12) log 3+(7-12 ) log 2
=> 4 log 5 -2 log 3 -5 log 2 -------------(1)
RHS:-
2 log (25/24) + log 2
We know that
log (a/b) = log a - log b
=> 2 log 25 - 2 log 24 + log 2
=> 2 log 5^2 - 2 log (2^3 ×3) + log 2
We know that
log (ab) = log a + log b
=> 2 log 5^2 - 2 log 2^3 - 2 log 3+ log 2
We know that
log a^m = m log a
=> (2×2) log 5 -(2×3) log 2 - 2 log 3 + log 2
=> 4 log 5 -6 log 2 - 2 log 3 + log 2
=> 4 log 5 -5 log 2 -2 log 3
=> 4 log 5 - 2 log 3 - 5 log 2 --------------(2)
From (1) &(2)
LHS = RHS
Answer:-
7log(10/9)+3log(81/80)=2log(25/24)+log2
Used formulae:-
- log (a/b) = log a - log b
- log (ab) = log a + log b
- log a^m = m log a