Math, asked by Shabib, 1 year ago

Show that (7a+4xy)2-(7a-4xy)2=56axy


HarishAS: I think it is 112axy . Not 56axy.
HarishAS: Pls correct the question.

Answers

Answered by HarishAS
0
Hey friend , Harish here.
_ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _

Here is your answer
_ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ 

We know that , 

(a + b)^{2} = a^{2} +b^{2} + 2 ab

(a-b)^{2} = a^{2}+b^{2}-2ab

Now, use the above given identities .

Then, 

(7a+4xy) ^{2} =  (7a)^{2} + (4xy)^{2} + 2(7a)(4xy)

                      = 49a^{2} + 16 x^{2}y^{2} + 56 axy 


(7a-4xy)^{2}= (7a)^{2}+(4xy)^{2} - 2(7a)(4xy)

                   = 49a^{2}+16 x^{2} y^{2} - 56a xy

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
 
Now, We Should simply & prove LHS = RHS.

( 7a +4xy)^{2} - ( 7a -4xy)^{2} = 112axy.

=> (49a^{2} + 16 x^{2}y^{2} + 56 axy )-(49a^{2} + 16 x^{2}y^{2} - 56 axy) = 112 axy

Now remove the brackets.

Then,

=> (49a^{2} + 16 x^{2}y^{2} + 56 axy - 49a^{2} - 16 x^{2}y^{2}  +56 axy) = 112 axy

=>56axy + 56 axy = 112axy

=>    112axy = 112 axy

             LHS=RHS

Hence proved.
______________________________________________________

Hope my answer is helpful to u.

HarishAS: If u have doubts pls ask without any hesitation.
Similar questions