Math, asked by Anonymous, 10 months ago

Show that (9, 0), (9, 6), (-9, 6) and (-9, 0) are the vertices of a rectangle

Answers

Answered by Anonymous
10

Solution

Given

the points are (9,0) , (9,6) , (-9,6) and (-9,0)

Let us consider these points as A , B ,C and D respectively .

So that ,

• A(9,0)

• B(9,6)

• C(-9,6)

• D(-9,0)

Formula to be used

Distance \: between \: two\: points \: ( x_{1},y_{1}) \: and \: ( x_{2},y_{2})is \\  =  \sqrt{ (x_{2} - x_{1}) ^{2}  + (y_{2} - y_{1})^{2}  }

So Applying the distance formula in the given Data we have

AB =  \sqrt{(9 - 9) {}^{2}  + (6 - 0) {}^{2} }  \\  \implies AB =  \sqrt{36}  \\  \implies AB = 6 \: units

BC =  \sqrt{( - 9 - 9) ^{2}  + (6 - 6) {}^{2} }  \\  \implies BC =  \sqrt{( - 18)  ^{2}  }  \\  \implies BC =  \sqrt{( - 1) ^{2}  \times ( {18})^{2} }  \\  \implies BC = 18 \: units

CD =  \sqrt{( - 9   + 9) {}^{2} + (0 - 6) ^{2}  }  \\  \implies CD =  \sqrt{( - 6) ^{2} }  \\  \implies CD =  \sqrt{ {( - 1)}^{2}  \times (6) {}^{2} }  \\  \implies CD = 6 \: units

AD =  \sqrt{( - 9 - 9)^{2} + (0 - 0) ^{2}  }  \\  \implies AD =  \sqrt{( - 18) {}^{2} }  \\  \implies AD =  \sqrt{( { - 1)}^{2} \times (18) {}^{2}  }  \\  \implies AD = 18  \:  units

Thus the opposite sides

AB = CD = 6 units

BC = AD = 18 units

Now for diagonals

AC =  \sqrt{( - 9 - 9) ^{2} + (6 - 0) ^{2}  }  \\  \implies AC =  \sqrt{(18 )^{2}  + (6 )^{2} }  \\  \implies AC =  \sqrt{324 + 36}  \\  \implies AC =  \sqrt{360}  \\  \implies AC =  \sqrt{36 \times 10}  \\  \implies AC = 6 \sqrt{10}  \: units

BD =  \sqrt{(9 + 9) ^{2} + (0 - 6) ^{2}  }  \\  \implies BD =  \sqrt{(18 {)}^{2}  + ( {6})^{2} }  \\  \implies BD =  \sqrt{324 + 36}  \\  \implies   BD =  \sqrt{360}  \\  \implies BD = 6 \sqrt{10}  \: units

Thus the diagonals AC = BD = 6√10 units

Now from the properties of a rectangle we have

• The opposite sides of a rectangle are equal

• The diagonals of a rectangle are equal

Therefore , ABCD is a rectangle

Shown

Similar questions