Math, asked by shilpab246, 3 months ago

Show that (9, 0)(9, 6)(-9, 6)and (-9, 0)are the vertices of a rectangle.​

Answers

Answered by gargipaithankar2003
0

Answer:

Solution

Given

the points are (9,0) , (9,6) , (-9,6) and (-9,0)

Let us consider these points as A , B ,C and D respectively .

So that ,

• A(9,0)

• B(9,6)

• C(-9,6)

• D(-9,0)

Formula to be used

\begin{gathered}Distance \: between \: two\: points \: ( x_{1},y_{1}) \: and \: ( x_{2},y_{2})is \\ = \sqrt{ (x_{2} - x_{1}) ^{2} + (y_{2} - y_{1})^{2} } \end{gathered}

Distancebetweentwopoints(x

1

,y

1

)and(x

2

,y

2

)is

=

(x

2

−x

1

)

2

+(y

2

−y

1

)

2

So Applying the distance formula in the given Data we have

\begin{gathered}AB = \sqrt{(9 - 9) {}^{2} + (6 - 0) {}^{2} } \\ \implies AB = \sqrt{36} \\ \implies AB = 6 \: units\end{gathered}

AB=

(9−9)

2

+(6−0)

2

⟹AB=

36

⟹AB=6units

\begin{gathered}BC = \sqrt{( - 9 - 9) ^{2} + (6 - 6) {}^{2} } \\ \implies BC = \sqrt{( - 18) ^{2} } \\ \implies BC = \sqrt{( - 1) ^{2} \times ( {18})^{2} } \\ \implies BC = 18 \: units\end{gathered}

BC=

(−9−9)

2

+(6−6)

2

⟹BC=

(−18)

2

⟹BC=

(−1)

2

×(18)

2

⟹BC=18units

\begin{gathered}CD = \sqrt{( - 9 + 9) {}^{2} + (0 - 6) ^{2} } \\ \implies CD = \sqrt{( - 6) ^{2} } \\ \implies CD = \sqrt{ {( - 1)}^{2} \times (6) {}^{2} } \\ \implies CD = 6 \: units\end{gathered}

CD=

(−9+9)

2

+(0−6)

2

⟹CD=

(−6)

2

⟹CD=

(−1)

2

×(6)

2

⟹CD=6units

\begin{gathered}AD = \sqrt{( - 9 - 9)^{2} + (0 - 0) ^{2} } \\ \implies AD = \sqrt{( - 18) {}^{2} } \\ \implies AD = \sqrt{( { - 1)}^{2} \times (18) {}^{2} } \\ \implies AD = 18 \: units\end{gathered}

AD=

(−9−9)

2

+(0−0)

2

⟹AD=

(−18)

2

⟹AD=

(−1)

2

×(18)

2

⟹AD=18units

Thus the opposite sides

AB = CD = 6 units

BC = AD = 18 units

Now for diagonals

\begin{gathered}AC = \sqrt{( - 9 - 9) ^{2} + (6 - 0) ^{2} } \\ \implies AC = \sqrt{(18 )^{2} + (6 )^{2} } \\ \implies AC = \sqrt{324 + 36} \\ \implies AC = \sqrt{360} \\ \implies AC = \sqrt{36 \times 10} \\ \implies AC = 6 \sqrt{10} \: units\end{gathered}

AC=

(−9−9)

2

+(6−0)

2

⟹AC=

(18)

2

+(6)

2

⟹AC=

324+36

⟹AC=

360

⟹AC=

36×10

⟹AC=6

10

units

\begin{gathered}BD = \sqrt{(9 + 9) ^{2} + (0 - 6) ^{2} } \\ \implies BD = \sqrt{(18 {)}^{2} + ( {6})^{2} } \\ \implies BD = \sqrt{324 + 36} \\ \implies BD = \sqrt{360} \\ \implies BD = 6 \sqrt{10} \: units\end{gathered}

BD=

(9+9)

2

+(0−6)

2

⟹BD=

(18)

2

+(6)

2

⟹BD=

324+36

⟹BD=

360

⟹BD=6

10

units

Thus the diagonals AC = BD = 6√10 units

Now from the properties of a rectangle we have

• The opposite sides of a rectangle are equal

• The diagonals of a rectangle are equal

Therefore , ABCD is a rectangle

ShownShown

Similar questions