Math, asked by TheDiamondGirl00, 2 months ago

Show that :- (9p - 5q)² + 180pq = (9p + 5q)²

Answers

Answered by anuragjana316
2

Answer:

Your answer is:-

Step by step explanation:

To prove

(9p - 5q)² + 180pq = (9p + 5q)²

proof

(9p−5q)² +180pq=(9p+5q)²

LHS➪(9p)² −2(9p)(5q)+(5q)² +180pq

➪81p² −90pq+25q² +180pq

➪81p² +90pq+25q²

RHS➪(9p+5q)²

➪(9p)² +2(9p)(5q)+(5q)²

➪81p² +90pq+25q²

LHS=RHS

Hence proved

Formula used

(a+b)²=a²+2ab+b²

(a-b)²=a²-2ab+b²

Answered by Anonymous
1

Given :-

  • (9p - 5q)² + 180pq = (9p + 5q)²

Solution :-

 \implies LHS \:  = (9p \:  -  \: 5q) {}^{2}  \:  +  \: 180 \: pq

 \implies (9p) {}^{2} \:  -  \: 2 \:  \times  \: 9p \:  \times  \: 5q \:  +   \: (5q) {}^{2}  \:   +  \: 180pq

 \implies(9p) {}^{2}  \:  -  \: 90pq \:  +  \: (5q) {}^{2}  \:  +  \: 180pq

 \implies \: (9p) {}^{2}  \:  +  \: 90pq \:  + \: (5q) {}^{2}

 \implies \: RHS \:  = (9p \:  +  \: 5q) {)}^{2}

 \implies \: LHS =  RHS

Similar questions