Math, asked by amrita025, 1 year ago

show that A (-1,0) B (3,1) C (2,2) and D(-2,1) are the vertices of a parallelogram ABCD?

Answers

Answered by Priyanshu8264742
75
since opposite side are equal and diagonal s are not equal therefore it is a parallelogram
Attachments:
Answered by Rajusingh45
65
 \huge \red {Hello \: flFriend}

 \bf{Given}

Let the coordinates of

A = (X₁, Y₁)

B = (X₂, Y₂)

C = (X₃, Y₃)

D = (X₄ , Y₄)

 \green{By \: distance \: formula : }

AB \: = \sqrt{(X2 - X1) + (Y2 - Y1)}

AB = \sqrt{(3 - ( -1 ) { }^{2} + (1 - 0) {}^{2} }

AB= \sqrt{(3 + 1) {}^{2} + (1) {}^{2} }

AB \: = \sqrt{(4) {}^{2} + 1}

AB = \sqrt{16 + 1} = \sqrt{17}

Now,

BC = \sqrt{(X3 - X2) {}^{2} + (Y3 - Y2) {}^{2} }

BC = \sqrt{(2 - 3) {}^{2} + (2 - 1) {}^{2} }

BC = \sqrt{( - 1) {}^{2} + (1) {}^{2} }

BC = \sqrt{1 + 1} = \sqrt{2}

Now,

CD = \sqrt{(X4 - X3) {}^{2} + (Y4 - Y3) {}^{2} }

CR = \sqrt{( - 2 - 2) {}^{2} + (1 - 2) {}^{2} }

CD = \sqrt{( - 4) { }^{2} + ( - 1) {}^{2} }

CD = \sqrt{16 + 1} = \sqrt{17}

Now,



AD = \sqrt{(X4 - X1) {}^{2} + (Y4 - Y1) {}^{2} }

AD = \sqrt{ ( - 2 - (1) {}^{2} + (1 - 0) {}^{2} }

AD= \sqrt{( - 2 + 1) {}^{2} + (1) {}^{2} }

<br /><br />AD = \sqrt{ (- 1) {}^{2} + 1}

<br /><br />AD = \sqrt{1 + 1} = \sqrt{2}

Here, AB = CD

and

BC = AD

Therefore, by the property of parallelogram the given vertices are of parallelogram .

 \huge \boxed { \boxed{thans}}
Similar questions