Math, asked by mariecurie41, 1 year ago

Show that A (-3, o) B (1, -3) and C (4, 1) are the vertices of an isosceles right angled
triangle . Also find the area of the triangle.​

Answers

Answered by Anonymous
3

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large\mathfrak{\underline{\underline{\huge\mathcal{\bf{\boxed{\huge\mathcal{~~QUESTION~~}}}}}}}

Show that A (-3, o) B (1, -3) and C (4, 1) are the vertices of an isosceles right angled

triangle . Also find the area of the triangle.

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large\mathfrak{\underline{\underline{\huge\mathcal{\bf{\boxed{\huge\mathcal{!!ANSWER!!}}}}}}}

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large\mathfrak{\large\mathcal{\bf{\boxed{\large\mathcal{...}}}}}

 \:\:  \underline{\underline{\bf{\large\mathfrak{~~solution~~}}}}

now ...A (-3, o) B (1, -3) and C (4, 1)

therefore...AB

 =  \sqrt{( - 3 - 1) {}^{2} + (0 + 3) {}^{2}  }  \\  =  \sqrt{25}  \\  = 5 \\

BC

 =   \sqrt{(1 - 4) {}^{2}  + ( - 3 - 1) {}^{2} }  \\  =  \sqrt{25}  \\  = 5

CA

 \sqrt{(4 + 3) {}^{2}   + (1 - 0) {}^{2} }   \\  =  \sqrt{50}  \\  = 5 \sqrt{2}

as the two sides are equal so ...the triangle ∆ABC is a isosceles triangle ...

(2)

A (-3, o) B (1, -3) and C (4, 1)

now area of the ∆ABC

is ...

 =  \frac{1}{2} ( - 3( - 3 - 1) + 1(1 - 0) + 4(0 + 3)) \\  =  \frac{1}{2} ( + 12 + 1 + 12) \\  = 12.5 \:  \: unit {}^{2}

\huge\mathcal\green{\underline{hope\:\: this\:\: helps\:\: you}}

Similar questions