Math, asked by patilmonty182, 3 months ago

Show that A(-4,-7) B(-1,2) C(8,5) P(5,-4) are the vertices of a Parallelogram.

Soln :​

Answers

Answered by CuteHubs
3

Step-by-step explanation:

Given vertices are A(-4,-7), B(-1,2),C(8,5) and D(5,-4).

We know that Distance : \sqrt{(x2 - x1)^2 + (y2 - y1)^2}Distance:

(x2−x1)

2

+(y2−y1)

2

Now,

AB = \sqrt{(-1 + 4)^2 + (2 + 7)^2}AB=

(−1+4)

2

+(2+7)

2

= \ \textgreater \ \sqrt{3^2 + 9^2}= \textgreater

3

2

+9

2

= \ \textgreater \ \sqrt{9 + 81}= \textgreater

9+81

= \ \textgreater \ \sqrt{90}= \textgreater

90

= \ \textgreater \ 3 \sqrt{10}= \textgreater 3

10

BC = \sqrt{(8 + 1)^2 + (5 - 2)^2 }BC=

(8+1)

2

+(5−2)

2

= \ \textgreater \ \sqrt{(9)^2 + (3)^2}= \textgreater

(9)

2

+(3)

2

= \ \textgreater \ \sqrt{81 + 9}= \textgreater

81+9

= \ \textgreater \ \sqrt{90}= \textgreater

90

= \ \textgreater \ 3 \sqrt{10}= \textgreater 3

10

CD = \sqrt{(5 - 8)^2 + (-4 - 5)^2}CD=

(5−8)

2

+(−4−5)

2

= \ \textgreater \ \sqrt{(-3)^2 + (-9)^2}= \textgreater

(−3)

2

+(−9)

2

= \ \textgreater \ \sqrt{9 + 81}= \textgreater

9+81

= \ \textgreater \ \sqrt{90}= \textgreater

90

= \ \textgreater \ 3 \sqrt{10}= \textgreater 3

10

AD = \sqrt{(5 + 4)^2 + (-4 + 7)^2}AD=

(5+4)

2

+(−4+7)

2

= \ \textgreater \ \sqrt{9^2 + 3^2}= \textgreater

9

2

+3

2

= \ \textgreater \ \sqrt{81 + 9}= \textgreater

81+9

= \ \textgreater \ \sqrt{90}= \textgreater

90

= \ \textgreater \ 3\sqrt{10}= \textgreater 3

10

Now,

Diagonals AC = \sqrt{(8 + 4)^2 + (5 + 7)^2}DiagonalsAC=

(8+4)

2

+(5+7)

2

= \ \textgreater \ \sqrt{(12)^2 + (12)^2}= \textgreater

(12)

2

+(12)

2

= \ \textgreater \ \sqrt{144 + 144}= \textgreater

144+144

= \ \textgreater \ \sqrt{288}= \textgreater

288

= \ \textgreater \ 12 \sqrt{2}= \textgreater 12

2

Diagonals BD = \sqrt{(5 + 1)^2 + (-4 - 2)^2}DiagonalsBD=

(5+1)

2

+(−4−2)

2

= \ \textgreater \ \sqrt{(6)^2 + (-6)^2}= \textgreater

(6)

2

+(−6)

2

= \ \textgreater \ \sqrt{36 + 36}= \textgreater

36+36

= \ \textgreater \ \sqrt{72}= \textgreater

72

= \ \textgreater \ 6 \sqrt{2}= \textgreater 6

2

Now,

Given that sides are equal but diagonals are not equal. Thus ABCD is a rhombus.

Hope this helps!

Similar questions