show that A(5,6) B (1,5) C (2,1) D(6,2) are the vertices of square
Answers
Answered by
2
Since it is a square the distance between all the vertices of the square will be equal .
distance of AB=√(x2-x1)²+(y2-y1)²
⇒√(1-5)²+(5-6)²
⇒√(-4²+-1²)
⇒√16+1
=√17
distance of BC=√(x2-x1)²+(y2-y1)²
⇒√(2-1)²+(1-5)²
⇒√(1²+4²)
=√17
distance of CD=√(x2-x1)²+(y2-y1)²
⇒√(6-2)²+(2-1)²
⇒√(4² + 1²)
=√17
distance of AD=√(x2-x1)²+(y2-y1)²
⇒√(6-5)²+(2-6)²
⇒√(1² + (-4²)
=√17
Hence proved that ABCD are the vertices of a square
distance of AB=√(x2-x1)²+(y2-y1)²
⇒√(1-5)²+(5-6)²
⇒√(-4²+-1²)
⇒√16+1
=√17
distance of BC=√(x2-x1)²+(y2-y1)²
⇒√(2-1)²+(1-5)²
⇒√(1²+4²)
=√17
distance of CD=√(x2-x1)²+(y2-y1)²
⇒√(6-2)²+(2-1)²
⇒√(4² + 1²)
=√17
distance of AD=√(x2-x1)²+(y2-y1)²
⇒√(6-5)²+(2-6)²
⇒√(1² + (-4²)
=√17
Hence proved that ABCD are the vertices of a square
Similar questions