Math, asked by anjaliharsh2007, 7 months ago

Show that (a+b)^2 + (a-b)^2 = 2(a^2+b^2).

Please answer fast......
This is my homework.​

Answers

Answered by Flaunt
44

\huge\tt{\bold{\underline{\underline{Question᎓}}}}

Show that (a+b)^2 + (a-b)^2 = 2(a^2+b^2).

\huge\tt{\bold{\underline{\underline{Answer᎓}}}}

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

\bold{ =  >  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab}

 \bold{=  >  {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab}

 \bold{=  >  {(a + b)}^{2}  +  {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab +  {a}^{2}  +  {b}^{2}  - 2ab}

=>Here,2ab and -2ab gets cancelled.

 \bold{=  {(a + b)}^{2}  +  {(a - b)}^{2}  = 2 {a}^{2}  + 2 {b}^{2}  = 2( {a}^{2}  +  {b}^{2} )}

=>Here,2 comes two times along with a and b so,take 2 as common.

\bold{\red{∴ {(a + b)}^{2}  +  {(a - b)}^{2}  = 2( {a}^{2}  +  {b}^{2})}}

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Similar questions