show that (a+b)^2-(a-b)^2=4ab
Answers
Answered by
59
( a + b )² - ( a - b )² = 4ab
LHS = ( a + b)² - ( a - b )²
=> ( a)² + (b)² + 2ab - { ( a)² + (b)² - 2ab ) }
=> a² + b² + 2ab - ( a² + b² - 2ab )
=> a² + b² + 2ab - a² - b² + 2ab
=> a² - a² + b² - b² + 2ab + 2ab
=> 2ab + 2ab
=> 4ab
Hence,
LHS = RHS = 4ab
LHS = ( a + b)² - ( a - b )²
=> ( a)² + (b)² + 2ab - { ( a)² + (b)² - 2ab ) }
=> a² + b² + 2ab - ( a² + b² - 2ab )
=> a² + b² + 2ab - a² - b² + 2ab
=> a² - a² + b² - b² + 2ab + 2ab
=> 2ab + 2ab
=> 4ab
Hence,
LHS = RHS = 4ab
Manjupunia:
In fifth line it's +2ab not +2a
Answered by
2
(a+b)²=a²+b²+2ab................................................(1)
and
(a-b)²=a²+b²-2ab...................................................(2)
subtracting equation (2) from (1) we get..
(a+B)²-(a-B)2 =4ab
hope you will get it
Similar questions