Show that,
(a + b) ² = a² + 2ab + b²
Answers
Answered by
6
GIVEN :-
TO PROVE :-
SOLUTION :-
Take L.H.S ,
It can be written as,
L.H.S = R.H.S
HENCE VERIFIED
ADDITIONAL INFORMATION :-
➣ ( x + y )² = x² + 2xy + y²
➣ ( x - y )² = x² - 2xy + y²
➣ ( a + b ) ( a + b ) = ( a + b )²
➣ ( a - b ) ( a - b ) = ( a - b )²
➣ ( a + b ) ( a - b ) = a² - b²
➣ ( x + a ) ( x + b ) = x² + x ( a + b ) + ab
Answered by
82
ADDITIONAL INFORMATION :-
➣ ( x + y )² = x² + 2xy + y²
➣ ( x - y )² = x² - 2xy + y²
➣ ( a + b ) ( a + b ) = ( a + b )²
➣ ( a - b ) ( a - b ) = ( a - b )²
➣ ( a + b ) ( a - b ) = a² - b²
➣ ( x + a ) ( x + b ) = x² + x ( a + b ) + ab
Similar questions