Math, asked by virendermahiwal55, 9 months ago

Show that,
(a + b) ² = a² + 2ab + b²​

Answers

Answered by prince5132
6

GIVEN :-

 \implies \bf \: (a \:  + b) ^{2}  = a ^{2}  + 2ab + b ^{2}

TO PROVE :-

 \implies \bf \: (a \:  + b) ^{2}  = a ^{2}  + 2ab + b ^{2}

SOLUTION :-

Take L.H.S ,

 \implies \sf \: (a + b) ^{2}

It can be written as,

 \implies \sf \: (a \:  + b)(a + b) \\  \\  \implies \sf \: a(a + b) + b(a + b) \\  \\  \implies \sf \: a ^{2}  + ab \:  + ab + b^{2}  \\  \\  \implies \sf \:  \: a ^{2}  + 2ab + b ^{2}

L.H.S = R.H.S

HENCE VERIFIED

ADDITIONAL INFORMATION :-

➣ ( x + y )² = x² + 2xy + y²

➣ ( x - y )² = x² - 2xy + y²

➣ ( a + b ) ( a + b ) = ( a + b )²

➣ ( a - b ) ( a - b ) = ( a - b )²

➣ ( a + b ) ( a - b ) = a² - b²

➣ ( x + a ) ( x + b ) = x² + x ( a + b ) + ab

Answered by asritadevi2344
82

 \red{ \underline \bold{given :(a + b) {}^{2}  =  {a}^{2} + 2ab +  {b}^{2}  }} \\  \\  \orange{ \underline \bold{:: : : :solution  }} \:  \\  \\ \orange{ \underline \bold{:take \: l . h .s}} \:  \\  \\ \orange{ \underline \bold{:it \: can \:  be \: written}} \:  \\  \\ \tt :  \implies \orange{ \underline \bold{: (a + b(a + b)}} \:  \\  \\  \tt :  \implies \: \orange{ \underline \bold{: a(a + b) + b(a + b)}} \:  \\  \\  \tt :  \implies\orange{ \underline \bold{:  {a}^{2}  + ab + ab +  {b}^{2} }} \:  \\  \\  \tt :  \implies\orange{ \underline \bold{:  {a}^{2} + 2ab  +  {b}^{2}  }} \\  \\ itz \: shiwam............................... \:




ADDITIONAL INFORMATION :-

➣ ( x + y )² = x² + 2xy + y²

➣ ( x - y )² = x² - 2xy + y²

➣ ( a + b ) ( a + b ) = ( a + b )²

➣ ( a - b ) ( a - b ) = ( a - b )²

➣ ( a + b ) ( a - b ) = a² - b²

➣ ( x + a ) ( x + b ) = x² + x ( a + b ) + ab

Similar questions