Show that (a-b)³ + (b-c)³ + (c-a)³ = 3(a-b) (b-c) (c-a)
Answers
ǫᴜᴇsᴛɪᴏɴ →
Show that (a-b)³ + (b-c)³ + (c-a)³ = 3(a-b) (b-c) (c-a)
ᴀɴsᴡᴇʀ →
- Answer in attachment.
- hope it's help you.
Answer:
(a2−b2)3+(b2−c2)3+(c2−a2)3(a−b)3+(b−c)3+(c−a)3
Let in numerator
x=(a2−b2),y=(b2−c2),z=(c2−a2)
⟹x+y+z=0(1)
We know, (x+y+z)3=x3+y3+z3+3(x+y+z)(xy+yz+zx)−3xyz
0=x3+y3+z3+3(0)(xy+yz+zx)−3xyz
x3+y3+z3=3xyz(2)
Let in denominator,
p=(a−b),q=(b−c),r=(c−a)
⟹p+q+r=0
⟹
p3+q3+r3=3pqr(3)
(a2−b2)3+(b2−c2)3+(c2−a2)3(a−b)3+(b−c)3+(c−a)3=3xyz3pqr
=(a2−b2)(b2−c2)(c2−a2)(a−b)(b−c)(c−a)
=(a−b)(b−c)(c−a)(a+b)(b+c)(c+a)(a−b)(b−c)(c−a)
=(a+b)(b+c)(c+a)
We know that if x+y+z = 0 then a^3+b^3+c^3=3ABC
Now (a^2-b^2)+(b^2-c^2)+(c^2-a^2) = 0
So (a^2-b^2)^3 + (b^2-c^2)^3 + (c^2-a^2)^3
= 3(a^2-b^2)(b^2-c^2)(c^2-a^2)
= 3(a+b)(a-b)(b+c)(b-c)(c+a)(c-a) ……..(1)
Similarly (a-b)+(b-c)+(c-a) = 0
=> (a-b)^3+(b-c)^3+(c-a)^3 =3(a-b)(b-c)(c-a)….(2)
From (1) and (2)
{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3} /
{(a-b)^3+(b-c)^3+(c-a)^3}
=3(a+b)(a-b)(b+c)(b-c)(c+a)(c-a) / 3(a-b)(b-c)(c-a)
= (a+b)(b+c)(c+a).
(a2−b2)3+(b2−c2)3+(c2−a2)3(a−b)3+(b−c)3+(c−a)3We know that if A+B+C=0ThenA3+B3+C3=3ABCAnd this is true for numerator and denominator3(a+b)(a−b)(b+c)(b−c)(c−a)(c+a)3(a−b)(b−c)(c−a)=:(a+b)(b+c)(c+a)