show that (a-b)3+(b-c)3+(c-a)3=3(a-b)(b-c)(c-a)
Answers
Answered by
0
Step-by-step explanation:
We know, (a−b)
3 =a 3 −b 3 −3a 2 b+3ab 2
⟹ (a−b) 3
=a 3 −b 3 −3ab(a−b).
Then,
(a−b) 3 +(b−c) 3 +(c−a) 3
=(a 3 −3a 2 b+3ab 2 −b 3 )+(b 3 −3b 2 c+3bc 2 −c 3 )+(c 3 −3c 2 a+3ca 2 −a 3 )
=−3a 2 b+3ab 2 −3b 2 c+3bc 2 −3c 2 a+3ca 2
=3a 2 (c−b)+3b 2 (a−c)+3c 2 (b−a).
Hope you give me that like...!!
Answered by
0
Answer:
(a-b) (b-c)^2 (c-a)^2 (c-b) (9)
Step-by-step explanation:
(a-b)3+(b-c)3+(c-a)3=3+(c-b)(b-c)(c-a)
(a-b) [+(b-c) (b-c)] [+(c-a) (c-a)] (c-b) (3+3+3)
(a-b) (b-c)^2 (c-a)^2 (c-b)(9)
I HOPE THIS ANSWER IS USEDFUUL
PLEASE BRANLIST ME
Similar questions