Show that
(a-b) (a+b) + (b-c) (b+c) + (c-a) (c+a) = 0.
Answers
Answered by
0
Step-by-step explanation:
(a-b) (a+b) + (b-c) (b+c) + (c-a) (c+a) = 0.
from L.H.S:
=(a-b) (a+b) + (b-c) (b+c) + (c-a) (c+a)
=a²-b²+b²-c²+c²-a²
=a²-a²-b²+b²-c²+c²
=0
hence proved
Answered by
0
Answer:
From LHS.
=(a-b)(a+b) + (b-c)(b+c) + (c-a)(c+a).
=a(a+b)-b(a+b)+b(b+c)-c(b+c)+c(c+a)-a(c+a) .
=a²+ab-ab-b²+b²+bc-bc-c²+c²+ac-ac-a².
=0.
Therefore, LHS=RHS.
Similar questions