Physics, asked by pratikrajvir20, 1 year ago

show that a=i^-j^÷√2 is the unit vector​

Answers

Answered by MaheswariS
103

Answer:

\vec{a}\:\text{is a unit vector}

Explanation:

Show that \vec{a}=\frac{\vec{i}}{\sqrt2}-\frac{\vec{j}}{\sqrt2} is the unit vector​

Unit vector:

A vector whose magnititude or length is one is called a unit vector

Given:

\vec{a}=\frac{1}{\sqrt2}\vec{i}-\frac{1}{\sqrt2}\vec{j}

Now,

|\vec{a}|=\sqrt{(\frac{1}{\sqrt2})^2+(\frac{-1}{\sqrt2})^2}

|\vec{a}|=\sqrt{\frac{1}{2}+\frac{1}{2}}

|\vec{a}|=\sqrt{1}

|\vec{a}|=1

\implies\:\vec{a}\:\text{is a unit vector}

Similar questions