show that a^k = b^k mod c, when k is any positive integer,given a=b mod c
Answers
Answered by
0
Step-by-step explanation:
Definition. Integer a is congruent to integer b modulo m > 0, if a and b give ... If a ≡ b (mod m) and c ≡ d (mod m), then a+c ≡ b +d (mod m). If a ≡ b ... b (mod m) a ≡ b ( mod m) i ak ≡ bk (mod mk) for any natural number k.
Similar questions