Math, asked by mustafeez51, 1 year ago

Show that:
a) tan 48° tan 23° tan 42° tan 67° = 1
(ii) cos 38° cos 52º - sin 38° sin 52° = 0

Answers

Answered by amit897
5
(a) in l.h.s
=tan(90-42).tan23.tan42.tan(90-23)
=cot42.tan23.tan42.cot23
=1/tan42×tan42×tan23×1/tan23
=1×1
=1
=R.HS
hence proved.
plz mark as brainlist...
Answered by sivaprasath
6

Step-by-step explanation:

Given :

To Prove :

a) tan 48° tan 23° tan 42° tan 67° = 1

b) cos 38° cos 52º - sin 38° sin 52° = 0

Proof :

a) LHS = tan 48° tan 23° tan 42° tan 67°

= (tan 48° tan 42°)( tan 23° tan 67°)

= (tan 48° cot (90 - 42)°)(tan 23° cot (90 - 67)°)  ∴ tan A = cot( 90 - A )

= (tan 48° cot 48°)(tan 23° cot 23°)

= (tan 48° \frac{1}{tan48})(tan 23° \frac{1}{tan23})

= 1

b)

LHS = cos 38° cos 52º - sin 38° sin 52°

= sin (90 - 38)° sin (90 - 52)º - sin 38° sin 52° ∴ cos A = sin(90 - A)

= sin 52° sin 38º - sin 38° sin 52°

= 0

Similar questions