Show that:
a) tan 48° tan 23° tan 42° tan 67° = 1
(ii) cos 38° cos 52º - sin 38° sin 52° = 0
Answers
Answered by
5
(a) in l.h.s
=tan(90-42).tan23.tan42.tan(90-23)
=cot42.tan23.tan42.cot23
=1/tan42×tan42×tan23×1/tan23
=1×1
=1
=R.HS
hence proved.
plz mark as brainlist...
=tan(90-42).tan23.tan42.tan(90-23)
=cot42.tan23.tan42.cot23
=1/tan42×tan42×tan23×1/tan23
=1×1
=1
=R.HS
hence proved.
plz mark as brainlist...
Answered by
6
Step-by-step explanation:
Given :
To Prove :
a) tan 48° tan 23° tan 42° tan 67° = 1
b) cos 38° cos 52º - sin 38° sin 52° = 0
Proof :
a) LHS = tan 48° tan 23° tan 42° tan 67°
= (tan 48° tan 42°)( tan 23° tan 67°)
= (tan 48° cot (90 - 42)°)(tan 23° cot (90 - 67)°) ∴ tan A = cot( 90 - A )
= (tan 48° cot 48°)(tan 23° cot 23°)
= (tan 48° )(tan 23° )
= 1
b)
LHS = cos 38° cos 52º - sin 38° sin 52°
= sin (90 - 38)° sin (90 - 52)º - sin 38° sin 52° ∴ cos A = sin(90 - A)
= sin 52° sin 38º - sin 38° sin 52°
= 0
Similar questions