Math, asked by Jakira143, 11 months ago

Show that ab is a factor of

(a+b)^n - (a^n + b^n ) ​

Answers

Answered by DynamiteDoll
4

◆ ▬▬▬▬▬▬ ❴✪❵ ▬▬▬▬▬▬ ◆

━━━━━━━━❪❐❫━━━━━━━━

<marquee>DynamiteDoll</marquee>

━━━━━━━━❪❐❫━━━━━━━━

Given expression

\bf\pink{\left(a + b\right)}^{n}{-}{\left({a}^{n}{+}{b}^{n}\right)}

let \mathcal\pink{n} be an even number

Take \bf\pink{n}\green{=}\pink{2}

\mathbb\blue{=} \bf\pink{\left(a + b\right)}^\pink{2}\pink{-}\pink{\left({a}^{2}\pink{+}{b}^{2}\right)}

\mathbb\blue{=} \bf\pink{a}^{2}\pink{+}\pink{2ab}\pink{+}\pink{b}^{2}\pink{-}\pink{a}^{2}\pink{-}\pinl{b}^{2}

\mathbb\blue{=} \bf\pink{2ab}

Hence ,

ab is a factor of the given expression because it is exactly divisible by ab

when ' n ' is an even number

Let n be an odd number

Take \bf\pink{n}\green{=}\pink{3}

\mathbb\blue{=} ( a + b )³ - ( + )

\mathbb\blue{=} + + 3ab ( a + b ) - -

\mathbb\blue{=} \bf\pink{3ab\left(a + b\right)}

Hence ,

ab is a factor of the given expression because it is exactly divisible by ab

When ' n ' is an odd number .

:. For all values of n , ab is a factor of

\huge\mathcal\orange{\left(a + b\right)}^{n}{-}{\left({a}^{n}{+}{b}^{n}\right)}

━━━━━━━━❪❐❫━━━━━━━━

<marquee>Thanks...⊙ิз⊙ิ♡ ▆▎ »» ♥</marquee>

━━━━━━━━❪❐❫━━━━━━━━

◆ ▬▬▬▬▬▬ ❴✪❵ ▬▬▬▬▬▬ ◆

Similar questions