Math, asked by Hari5772, 10 months ago

Show that ab2-b2c+bc2-ac2+a2c-a2b=(a-b)(b-c)(c-a)

Answers

Answered by pulakmath007
13

SOLUTION

TO PROVE

 \sf{a {b}^{2} -  {b}^{2} c + b {c}^{2} - a {c}^{2} +  {a}^{2}c -  {a}^{2}b = (a - b)(b - c)(c - a)     }

PROOF

RHS

 \sf{(a - b)(b - c)(c - a)}

 =  \sf{(ab - ac -  {b}^{2}  + bc)(c - a)}

 =  \sf{abc -  {a}^{2}b  - a {c}^{2} +  {a}^{2}c   -  {b}^{2} c+a {b}^{2} + b {c}^{2}  - abc  }

 =  \sf{ -  {a}^{2}b  - a {c}^{2} +  {a}^{2}c   -  {b}^{2} c+a {b}^{2} + b {c}^{2}   }

 =  \sf{a {b}^{2} -  {b}^{2} c + b {c}^{2} - a {c}^{2} +  {a}^{2}c -  {a}^{2}b}

= LHS

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if 3√x+(3√3375) ^3 =17 , then find the cube root of x-1026 is equal to

https://brainly.in/question/28465037

2. Find the value of the expression

a² – 2ab + b² for a = 1, b = 1

https://brainly.in/question/28961155

Answered by BrainlyKingdom
1

We have

  • \sf{ab^2-a^2b-ac^2+a^2c-b^2c+bc^2} in L.HS
  • \sf{\left(a-b\right)\left(b-c\right)\left(c-a\right)} in R.H.S.

Change the positions i.e L.H.S To R.H.S and R.H.S To L.H.S

  • Note : Changing positions doesn't affect answer

___________________________________________________

\sf{\left(a-b\right)\left(b-c\right)\left(c-a\right)\:\:\:\:\:\:\:\bf{(R.H.S)}}

\sf{=(ab+a\left(-c\right)+\left(-b\right)b+\left(-b\right)\left(-c\right))\left(c-a\right)}

\sf{=(ab-ac-bb+bc)\left(c-a\right)}

\sf{=(ab-ac-b^2+bc)\left(c-a\right)}

\sf{=abc+ab\left(-a\right)+\left(-ac\right)c+\left(-ac\right)\left(-a\right)+\left(-b^2\right)c+\left(-b^2\right)\left(-a\right)+bcc+bc\left(-a\right)}

\sf{=abc-aab-acc+aac-b^2c+ab^2+bcc-abc}

\sf{=ab^2-aab+abc-acc+aac-abc-b^2c+bcc}

\sf{=ab^2-aab-acc+aac-b^2c+bcc}

\bf{=ab^2-a^2b-ac^2+a^2c-b^2c+bc^2\:\:\:\:\:\:\:\:\:(L.H.S)}

Hence Proved !!

Similar questions