Show that according to the elementary kinetic theory of gases the diffusivity in gases depends on pressure and temperature as
Answers
Answered by
0
The kinetic theory of gases describes a gasas a large number of submicroscopic particles (atoms or molecules), all of which are in constant, rapid, random motion. The randomness arises from the particles' many collisions with each other and with the walls of the container.
Kinetic theory of gases explains the macroscopic properties of gases, such as pressure, temperature, viscosity, thermal conductivity, and volume, by considering their molecular composition and motion. The theory posits that gas pressure results from particles' collisions with the walls of a container at different velocities.
Kinetic molecular theory defines temperature in its own way, in contrast with the thermodynamic definition.[1]
Under an optical microscope, the molecules making up a liquid are too small to be visible. However, the jittery motion of pollen grains or dust particles in liquid are visible. Known as Brownian motion, the motion of the pollen or dust results from their collisions with the liquid's molecules.
Kinetic theory of gases explains the macroscopic properties of gases, such as pressure, temperature, viscosity, thermal conductivity, and volume, by considering their molecular composition and motion. The theory posits that gas pressure results from particles' collisions with the walls of a container at different velocities.
Kinetic molecular theory defines temperature in its own way, in contrast with the thermodynamic definition.[1]
Under an optical microscope, the molecules making up a liquid are too small to be visible. However, the jittery motion of pollen grains or dust particles in liquid are visible. Known as Brownian motion, the motion of the pollen or dust results from their collisions with the liquid's molecules.
Similar questions