Chemistry, asked by usmansamaila899, 1 year ago

Show that an ideal gas is Cp-Cv=R

Answers

Answered by Anonymous
2

Answer:

26-Oct-2019 · The Relationship between Cp and Cv of an ideal gas at constant volume Cv, and heat capacity at constant pressure Cp . ... CP∆T = CV∆T + R ∆T CP = CV + R

Answered by Anonymous
6

  \underline{ \boxed{ \huge{ \mathfrak{ \purple{Answer}}}}} \\  \\  \star \rm \:  \red{To \: Derive} \\  \\  \implies  \:   \boxed{ \rm{C{ \tiny{p}} - C{ \tiny{v}} = R}} \\  \\  \star \rm \:  \red{Derivation} \\  \\  \implies \rm \: for \: an \: ideal \: gas \begin{cases}  \boxed{ \rm{ \pink{C{ \tiny{p}} =  \frac{fR}{2}  + R }}}\\  \\   \boxed{ \rm{ \pink{C{ \tiny{v}} =  \frac{fR}{2} }}}\end{cases} \\  \\  \implies \rm \:   f = degree\: of\: freedom \\ \\ \implies \sf \: \boxed{ \rm{\orange{C{ \tiny{p}} - C{ \tiny{v}}}}} =  \frac{fR}{2}  + R -  \frac{fR}{2}  =  \boxed{ \rm{ \orange{R}}}

Similar questions