show that any positive integer a is in the form of 3q,3q+1,3q+2
Answers
Answered by
3
This is right answer but ur question is wrong
Attachments:
Answered by
0
Let x be the integer
x=3q
x²=9q²
x²=3(3q²)
x²=3q [let 3q² be q]
============================================
x=3q+1
x²=(3q+1)²
x²=9q²+6q+1
x²=3(3q²+2q)+1
x²=(3q+1) [let 3q²+2q be q]
============================================
x=3q+2
x²=(3q+2)²
x²=9q²+12q+4
x²=3(3q²+4q+1)+1
x²=(3q+1) [3q²+4q+1 be q]
=============================================
it proves q² is in the form of 3q and (3q+1) but not in the form of (3q+2)
x=3q
x²=9q²
x²=3(3q²)
x²=3q [let 3q² be q]
============================================
x=3q+1
x²=(3q+1)²
x²=9q²+6q+1
x²=3(3q²+2q)+1
x²=(3q+1) [let 3q²+2q be q]
============================================
x=3q+2
x²=(3q+2)²
x²=9q²+12q+4
x²=3(3q²+4q+1)+1
x²=(3q+1) [3q²+4q+1 be q]
=============================================
it proves q² is in the form of 3q and (3q+1) but not in the form of (3q+2)
Similar questions
English,
6 months ago
Social Sciences,
6 months ago
English,
6 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Computer Science,
1 year ago