show that any positive integer is of the form 3q, 3q + 1 or 3 q + 2 where q is some integer
Answers
Answered by
3
let x be the integer
x=3q
x²=9q²
x²=3(3q²)
x²=3q [let 3q² be q]
============================================
x=3q+1
x²=(3q+1)²
x²=9q²+6q+1
x²=3(3q²+2q)+1
x²=(3q+1) [let 3q²+2q be q]
============================================
x=3q+2
x²=(3q+2)²
x²=9q²+12q+4
x²=3(3q²+4q+1)+1
x²=(3q+1) [3q²+4q+1 be q]
=============================================
it proves q² is in the form of 3q and (3q+1) but not in the form of (3q+2)
Read more on Brainly.in - https://brainly.in/question/1173588#readmore
Answered by
2
let a be any positive integer
then
b= 3
a= bq+r
0≤r<b
0≤r<3
r= 0,1,2
case 1.
r=0
a= bq+r
3q+0
3q
case 2.
r=1
a= 3q+1
3q+1
case3.
r=2
a=3q+2
hence from above it is proved that any positive integer is of the form 3q,3q+1 and 3q+2
Similar questions