show that any positive integer is of the form of 9 M and 9 M + 1 or 9 M + 8 use Euclid Lemma
Answers
Answered by
0
Answer:
Using Euclid Lemma, we have
Step-by-step explanation:
Let the positive integer be a.
Now, a=3q+r
where, r=0,1,2 (since 0<=r<3)
When r=0,
a=3q
=》 a^3=(3q)^3
=27q^3
=9(3q^3)
=9m, where m= 3q^3
When r=1
a=3q+1
=》 a^3=(3q+1)^3
=(3q)^3+1^3+3×(3q)^2×1+3×3q×1 [Using the identity (a+b)^3 ]
=27q^3 +1+27q^2 +9q
=9(3q^3+3q^2+q)+1
=9m+1 , where m=3q^3+3q^2+q
When r=2,
a=3q+2
=》 a^3=(3q+2)^3 [cubing both sides]
=27q^3+8+54q^2+36q [ using the identity (a+b)^3 ]
=9(3q^3+6q^2+4q)+8
=9m+8, where m=3q^3+6q^2+4q
Therefore, the cube of any positive integer is in the form of 9m, 9m+1 or 9m+8.
Hence, proved.
Similar questions