Show that any positive no is in the form of 3q, 3q+1 and 3q+2
Answers
Answered by
0
y is any integer
y=3q
y^2=9q^2
y^2=3(3q^2)
y^2=3q, 3q^2=q
--------------------------------------------------------------------------------------
y=3q+1
y^2=(3q+1)^2
y^2=9q^2+6q+1
y^2=3(3q^2+2q)+1
y^2=(3q+1)
3q^2+2q=q
--------------------------------------------------------------------------------------------------------
y=3q+2
y^2=(3q+2)^2
y^2=9q^2+12q+4
y^2=3(3q^2+4q+1)+1
y^2=(3q+1) [3q^2+4q+1 be q]
it is showing that q^2 is in 3q and 3(q+1) but not in 3(q+2)
Similar questions