Math, asked by MATEEN1767, 1 year ago

Show that any positive odd integer as of the form of 8q+1 8q+3 8q+5 8q+7

Answers

Answered by brunoconti
5

Answer:

Step-by-step explanation:

Attachments:
Answered by fanbruhh
10

 \huge \bf \red{ \mid{\overline{ \underline{ANSWER}}} \mid}

» let a be any positive integer

» then

» b=8

→ 0≤r<b = 0≤r<8

→ r=0,1,2,3,4,5,6,7

» case 1.

› r=0

a=bq+r

8q+0

8q

→ case 2.

» r=1

› a=bq+r

8q+1

→ case3.

» r=2

› a=bq+r

8q+2

→ case 4.

» r=3

› a=bq+r

8q+3

→ case 5.

» r=4

› a=bq+r

8q+4

→ case 6.

» r=5

› a=bq+r

8q+5

→ case7.

» r=6

› a=bq+r

8q+6

→ case 8

» r=7

› a=bq+r

8q+7

Similar questions