show that any positive odd integer is of form 8q+1 or 8q+3 or 8q+5 or 8q+7
Answers
Answered by
1
Answer:
Yes
Let a be any positive integer
According to Euclids division lemma
a = bq + r
b = 8
so the possible values of r = 0,1,2,3,4,5,6,7
a = 8q ( it is even)
a = 8q + 1 ( it is odd)
..........and so on
Answered by
0
Step-by-step explanation:
a = bq+r where, 0 <= r < b
so all possible values of a if b = 8
a = 8q+0, 8q+1, 8q+2, 8q+3, 8q+4, 8q+5, 8q+6, 8q+7
as it is asked for all odd values:
8q+0, 8q+2, 8q+4, 8q+6 will not be included as all these are even values
so answer will be:
a = 8q+1, 8q+3, 8q+5, 8q+7
Similar questions