Math, asked by jivikapahwa19, 9 months ago

show that any positive odd integer is of the form 6q+1,or 6q+3 or 6q+5 where q is the integer?

Answers

Answered by rukumanikumaran
1

Hope this helps u ❤️❤️

Let a be the positive odd integer which when divided by 6 gives q as quotient and r as remainder.

according to Euclid's division lemma

a=bq+r

a=6q+r

where , a=0,1,2,3,4,5

then,

a=6q

or

a=6q+1

or

a=6q+2

or

a=6q+3

or

a=6q+4

or

a=6q+5

but here,

a=6q+1 & a=6q+3 & a=6q+5 are odd.

Answered by Hɾιтհιĸ
74

according to Euclid's division lemma

a=bq+r

a=6q+r

where , a=0,1,2,3,4,5

then,

a=6q

or

a=6q+1

or

a=6q+2

or

a=6q+3

or

a=6q+4

or

a=6q+5

but here,

a=6q+1 & a=6q+3 & a=6q+5 are odd.

Similar questions