show that any positive odd integer is of the form 6q + 1 or 6q + 3 or 6q + 5 Where q is some integer.
Answers
Answered by
3
Hlo mate :-
Solution :-
____________________________________________________________________________________
● Let a be the positive odd integer when divided by 6 gives "q" as quotient and "r"as remainder.
a/c to Euclid's division lemma
● a=bq+r
● a=6q+r
where , a=0,1,2,3,4,5
then,
a=6q
or
a=6q+1
or
a=6q+2
or
a=6q+3
or
a=6q+4
or
a=6q+5
but here,
a=6q+1 & a=6q+3 & a=6q+5 are odd.
____________________________________________________________________________________
☆ ☆ ☆ Hop It's helpful ☆ ☆ ☆
Solution :-
____________________________________________________________________________________
● Let a be the positive odd integer when divided by 6 gives "q" as quotient and "r"as remainder.
a/c to Euclid's division lemma
● a=bq+r
● a=6q+r
where , a=0,1,2,3,4,5
then,
a=6q
or
a=6q+1
or
a=6q+2
or
a=6q+3
or
a=6q+4
or
a=6q+5
but here,
a=6q+1 & a=6q+3 & a=6q+5 are odd.
____________________________________________________________________________________
☆ ☆ ☆ Hop It's helpful ☆ ☆ ☆
ankitaabhishek:
thanku dear ☺️
Answered by
5
let a be any positive integer
then
b= 6
a= bq+r
0≤r<b
0≤r<6
r= 0,1,2,3,4,5
case 1.
r=0
a= bq+r
6q+0
6q
case 2.
r=1
a= 6q+1
6q+1
case3.
r=2
a=6q+2
case 4.
r=3
a=6q+3
case 5
r=4
a=6q+4
case 6..
r=5
a=6q+5
hence from above it is proved that any positive integer is of the form 6q, 6q+1,6q+2,6q+3,6q+4 and 6q+5and
Similar questions