show that any positive odd integer is of the form 8q+1 ,8q+3,8q+5 and 8q+7
Answers
Answer:
Step-by-step explanation:
let us start with with taking a, where a is a positive odd integer.
We apply the division algorithm with a and b = 8.
since 0 ≤ r < 8 the possible remainders are 0,1,2,....7.
That is a can be 8q or8q+1 or 8q+2 or 8q+3 or 8q+4or 8q+5 or 8q+6 where q is quotient.
How ever since a is odd a cannt be 8q or 8q+2 or 8q+4 (since they are divisible by 2).
There fore, any odd integer is of the form 8q+1, 8q+3, 8q+5 or 8q+7.
or
Let n be a positive odd integer. We need to show that n can be written in any one of the form of 8q+1, 8q+3, 8q+5 or 8q+7
According to division algorithm,
we can write any number ‘a’ in the form
a = 8q + r
where q is any integer and 0 <= r <= 7. So r can be 0, 1, 2, 3, 4, 5, 6 or 7.
Thus, a can be written as
a = 8q
a = 8q+2
a = 8q+3
a = 8q+4
a = 8q+5
a = 8q+6
a = 8q+7
We need only odd numbers. Since 8q, 8q+2, 8q+4, and 8q+6 are divisible by 2, they are even numbers.
So any odd integer can be written as any one of the remaining forms which are (8q+1, 8q+3, 8q+5 or 8q+7.)
» let a be any positive integer
» then
» b=8
→ 0≤r<b = 0≤r<8
→ r=0,1,2,3,4,5,6,7
» case 1.
› r=0
a=bq+r
8q+0
8q
→ case 2.
» r=1
› a=bq+r
8q+1
→ case3.
» r=2
› a=bq+r
8q+2
→ case 4.
» r=3
› a=bq+r
8q+3
→ case 5.
» r=4
› a=bq+r
8q+4
→ case 6.
» r=5
› a=bq+r
8q+5
→ case7.
» r=6
› a=bq+r
8q+6
→ case 8
» r=7
› a=bq+r
8q+7