Show that any positive odd integer is of the form 8q+1 or 8q+3 or 8q+5 or 8q+7 for some integer q.
Answers
Answered by
23
Acc. to lema
a=bq+r
o=<r<b
b=8
o=<r<8
r=0,1,2,3,4,5,6,7
if,,r=0
a=8q+o
=8q
if..r=1
a=8q+1
follow as per this by taking r=2,3,4,5,6,7 and then pick out odd ones
a=bq+r
o=<r<b
b=8
o=<r<8
r=0,1,2,3,4,5,6,7
if,,r=0
a=8q+o
=8q
if..r=1
a=8q+1
follow as per this by taking r=2,3,4,5,6,7 and then pick out odd ones
Answered by
7
let a be any positive integer
then
b=8
0≤r<b
0≤r<8
r=0,1,2,3,4,5,6,7
case 1.
r=0
a=bq+r
8q+0
8q
case 2.
r=1
a=bq+r
8q+1
case3.
r=2
a=bq+r
8q+2
case 4.
r=3
a=bq+r
8q+3
case 5.
r=4
a=bq+r
8q+4
case 6.
r=5
a=bq+r
8q+5
case7.
r=6
a=bq+r
8q+6
case 8
r=7
a=bq+r
8q+7
Similar questions