show that any positive odd integer is of the form of 6q+1, 6q+3, 6q+5, where q is some integer
Answers
Answer:
Let a be a given integer.
Let a be a given integer.On dividing a by 6 , we get q as the quotient and r as the remainder such that
=> a = 6q + r, r = 0,1,2,3,4,5
a = 6q + r, r = 0,1,2,3,4,5when r=0
a = 6q + r, r = 0,1,2,3,4,5when r=0a = 6q,even no
a = 6q + r, r = 0,1,2,3,4,5when r=0a = 6q,even nowhen r=1
a = 6q + r, r = 0,1,2,3,4,5when r=0a = 6q,even nowhen r=1a = 6q + 1, odd no
a = 6q + r, r = 0,1,2,3,4,5when r=0a = 6q,even nowhen r=1a = 6q + 1, odd nowhen r=2
a = 6q + r, r = 0,1,2,3,4,5when r=0a = 6q,even nowhen r=1a = 6q + 1, odd nowhen r=2a = 6q + 2, even no
a = 6q + r, r = 0,1,2,3,4,5when r=0a = 6q,even nowhen r=1a = 6q + 1, odd nowhen r=2a = 6q + 2, even nowhen r = 3
a = 6q + r, r = 0,1,2,3,4,5when r=0a = 6q,even nowhen r=1a = 6q + 1, odd nowhen r=2a = 6q + 2, even nowhen r = 3a=6q + 3,odd no
a = 6q + r, r = 0,1,2,3,4,5when r=0a = 6q,even nowhen r=1a = 6q + 1, odd nowhen r=2a = 6q + 2, even nowhen r = 3a=6q + 3,odd nowhen r=4
a = 6q + r, r = 0,1,2,3,4,5when r=0a = 6q,even nowhen r=1a = 6q + 1, odd nowhen r=2a = 6q + 2, even nowhen r = 3a=6q + 3,odd nowhen r=4a=6q + 4,even no
a = 6q + r, r = 0,1,2,3,4,5when r=0a = 6q,even nowhen r=1a = 6q + 1, odd nowhen r=2a = 6q + 2, even nowhen r = 3a=6q + 3,odd nowhen r=4a=6q + 4,even nowhen r=5,
a = 6q + r, r = 0,1,2,3,4,5when r=0a = 6q,even nowhen r=1a = 6q + 1, odd nowhen r=2a = 6q + 2, even nowhen r = 3a=6q + 3,odd nowhen r=4a=6q + 4,even nowhen r=5,a= 6q + 5 , odd no
a = 6q + r, r = 0,1,2,3,4,5when r=0a = 6q,even nowhen r=1a = 6q + 1, odd nowhen r=2a = 6q + 2, even nowhen r = 3a=6q + 3,odd nowhen r=4a=6q + 4,even nowhen r=5,a= 6q + 5 , odd noAny positive odd integer is of the form 6q+1,6q+3 or 6q+5.
Answer:
Let 'a' be positive integers ;by Eculid lemma
a=6q,6q+1,6q+2,6q+3,6q+4,6q+5
a=6q=2×(3q) = divisible by 2 =even
a=6q+1 =2×(3q)+1 =not divisible by 2=odd
a=6q+2=2×(3q+1) =divisible by 2=even
a=6q+3=2×(3q) +3=not divisible by 2=odd
a=6q+4=2×(3q+2)= divisible by 2=even
a=6q+5=2×(3q)+5 =not divisible by 2=odd
so, the odd forms a
6q+1,6q+2,6q+5 are positive integers