show that any positive odd integer is of the form of 8q +1, 8q +3 or 8q +5 where q is integer
Answers
Answered by
1
let us start with with taking a, where a is a positive odd integer.
We apply the division algorithm with a and b = 8.
since 0 ≤ r < 8 the possible remainders are 0,1,2,....7.
That is a can be 8q or8q+1 or 8q+2 or 8q+3 or 8q+4or 8q+5 or 8q+6 where q is quotient.
How ever since a is odd a cannt be 8q or 8q+2 or 8q+4 (since they are divisible by 2).
There fore, any odd integer is of the form 8q+1, 8q+3, 8q+5 or 8q+7.
Answered by
1
let a be any positive integer
then
b=8
0≤r<b
0≤r<8
r=0,1,2,3,4,5,6,7
case 1.
r=0
a=bq+r
8q+0
8q
case 2.
r=1
a=bq+r
8q+1
case3.
r=2
a=bq+r
8q+2
case 4.
r=3
a=bq+r
8q+3
case 5.
r=4
a=bq+r
8q+4
case 6.
r=5
a=bq+r
8q+5
case7.
r=6
a=bq+r
8q+6
case 8
r=7
a=bq+r
8q+7
Similar questions
English,
8 months ago
Social Sciences,
8 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Math,
1 year ago